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We study the transfer of energy between different scales for forced three-dimensional magnetohydrodynam-
ics turbulent flows in the kinematic dynamo regime. Two different forces are examined: a nonhelical Taylor-
Green flow with magnetic Prandtl number PM =0.4 and a helical ABC flow with PM =1. This analysis allows
us to examine which scales of the velocity flow are responsible for dynamo action and identify which scales of
the magnetic field receive energy directly from the velocity field and which scales receive magnetic energy
through the cascade of the magnetic field from large to small scales. Our results show that the turbulent
velocity fluctuations in the inertial range are responsible for the magnetic field amplification at small scales
�small-scale dynamo� while the large-scale field is amplified mostly due to the large-scale flow. A direct
cascade of the magnetic field energy from large to small scales is also presented and is a complementary
mechanism for the increase of the magnetic field at small scales. The input of energy from the inertial range
velocity field into the small magnetic scales dominates over the energy cascade up to the wave number where
the magnetic energy spectrum peaks. At even smaller scales, most of the magnetic energy input is from the
cascading process.
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I. INTRODUCTION

Dynamo action is often invoked to explain the generation
and sustainment of magnetic fields in astronomical objects.
In the magnetohydrodynamics �MHD� dynamo, an initially
small magnetic field is amplified by currents induced solely
by the motion of a conducting fluid �1�. In typical astrophysi-
cal situations where amplified magnetic fields are met, the
velocity field is composed of a large-scale flow �e.g., rotation
and/or meridional flows� together with turbulent fluctuations
in smaller scales. As an example, in the Sun both large- and
small-scale magnetic fields are observed. The large-scale
components of the magnetic field are generated by a large-
scale flow �2�. Simulations also show that the small-scale
magnetic fields can be generated by turbulent fluctuations in
the convective region �3�. Understanding the generation of
magnetic fields under these conditions and the role played by
the two components of the flow �large scale and turbulent� is
today a crucial aspect of dynamo theory.

Dynamos are often classified as small-scale and large-
scale dynamos, depending on the properties of the amplified
magnetic field �4�. In large-scale dynamos, the focus is on
whether a flow can amplify and sustain magnetic fields at
scales larger than the velocity integral scale. This interest is
motivated by astrophysical problems where large-scale mag-
netic fields are actually observed, such as the dipolar com-
ponent in stars and planets. The amplification of the mag-
netic field in these scales is usually explained by invoking a
turbulent � effect and/or amplification due to a large-scale
flow. The linear �or kinematic� regime of large-scale dynamo
action has been studied with the use of mean-field theory
�5,6� and MHD closures �7� and with the aid of numerous

direct numerical simulations �DNS’s� �see, e.g., �8–10��. In
theoretical investigations of large-scale dynamo action, heli-
cal flows are generally considered, which are thought of as
better candidates for amplifying the magnetic field at larger
scales. However, the presence of helicity is not necessarily
needed to generate large-scale magnetic fields �11�; they can
also be amplified in nonhelical flows if anisotropy �12� or
other mean-field effects �13,14� are present.

Small-scale dynamos, on the other hand, amplify mag-
netic fields on scales smaller than the energy containing
scales of the turbulence �15–19�. Theoretical investigations
usually involve assumptions of nonhelical velocity fields
�see, however, �20��, � correlated in time �as a simplifying
approximation to a turbulent flow�, and often the limit of
large magnetic Prandtl number PM �1 is considered. Nu-
merically small-scale dynamos have been investigated in
Refs. �8,18,19�. Here we note that an argument due to Batch-
elor �21� suggests that this dynamo can only operate if PM
�1. However, there are reasons to believe the small-scale
dynamo can work even when PM �1 if the magnetic Rey-
nolds number RM is large enough �22,23�.

However, this separation between large-scale and small-
scale dynamos is in some cases artificial and may be mis-
leading. Most astronomical objects display a large-scale flow
with turbulent fluctuations at smaller scales, and both large-
and small-scale magnetic fields are observed. The transition
between the two magnetic fields is often smooth, and a clear
distinction between the two cannot be made. This has led
some authors to develop models trying to unify the two re-
gimes �24�. Furthermore, the two amplification mechanisms
in the small and large scales are coupled in many cases and
cannot be considered independently. According to mean-field
theory �6,16�, the large-scale magnetic field in a turbulent
dynamo results from the small-scale �helical� velocity fields.
Moreover, concerning the amplification of small-scale mag-
netic fields, it has been argued that when a large-scale mag-
netic field is present, small scales can be generated by the
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distortion of large-scale field lines �see, e.g., �1��, even in the
absence of self-excitation �small-scale dynamo action�. This
is a common assumption in mean-field dynamos, where it is
often considered that the needed small-scale magnetic fields
are only fed by the large-scale field through a nonlinear cas-
cade process.

In the presence of both a large-scale flow and turbulent
fluctuations, the role played by the different scales involved
in the amplification process is thus of crucial importance and
is not well understood. When magnetic fields are present at
scales both smaller and larger than the energy containing
scales of the velocity field, it is not clear what portion of the
small-scale magnetic field is generated by direct cascade of
magnetic energy from the large scales and what from self-
excitation. Furthermore, it is not well understood what por-
tion of the amplification of the large- or small-scale dynamo
is due to the forced component of the flow and what part is
due to the turbulent fluctuations which emerge through non-
linear interactions at high Reynolds number. To answer these
questions, a detailed study of the energy transfer from the
different velocity scales to the different magnetic scales is
required. This kind of approach naturally raises the question
of the locality �in Fourier space� of the interactions that are
taking place in a turbulent dynamo.

In a companion paper �25� �hereafter referred to as paper
I�, the transfer of energy between the velocity and magnetic
field at different scales was studied for mechanically forced
MHD turbulence in a steady state where both fields are in
quasiequipartition by introducing the energy transfer func-
tions between different shells of wave numbers in Fourier
space �see also �26,27��. In this paper, we present shell-to-
shell energy transfers during the kinematic regime of two
different MHD dynamos. Our main interest is to identify
which velocity field scales are responsible for the amplifica-
tion of the large- and small-scale magnetic field, which
scales of the magnetic field receive most of the energy, and
how the magnetic energy cascades among the different
scales.

In Sec. II we present a brief review of the equations and
definition of transfer functions needed to study this problem,
and in Sec. III we give the results from simulations; we also
discuss in this section some details of the nonlinear satura-
tion of the dynamo. Finally, in Sec. IV we present the con-
clusions of our work.

II. TRANSFER FUNCTIONS

We will consider the incompressible MHD equations

�tu + u · �u = − �p + b · �b + ��2u + f , �1�

�tb + u · �b = b · �u + ��2b , �2�

where u is the velocity field, b is the magnetic field, � is the
kinematic viscosity, � is the magnetic diffusivity, p is the
total pressure, and f a constant external force. These equa-
tions are accompanied by the conditions � ·u=0=� ·b.
Equations �1� and �2� are solved in a periodic domain using
a pseudospectral method with the 2/3 dealiasing rule and
second-order Runge-Kutta method to advance in time.

We are interested in the kinematic regime of the dynamo,
where a small magnetic seed is amplified exponentially with-
out modifying the velocity field �i.e., the effect of the Lor-
entz force on the velocity field is negligible�.

To this end, we made two numerical simulations using a
grid of 2563 points under the following procedure. First, a
hydrodynamic simulation was performed to obtain a turbu-
lent steady state. Then, a random small magnetic field was
introduced and the simulation was carried, keeping the force
fixed to observe exponential amplification of the magnetic
energy. The data were analyzed during this stage and as the
systems approached saturation.

Two expressions for the external force were used: Taylor-
Green �TG� and ABC. The TG forcing is nonhelical �f ·�
� f=0 pointwise�, while the ABC forcing is of maximum
helicity and the resulting flow has non-negligible helicity
�for a description of the resulting flows see, e.g., �28,29��. In
both simulations, the amplitude of the external force was set
to obtain a unity rms velocity, and the characteristic wave
number of the force was chosen to obtain a large scale flow
at kF�3. The TG simulation had �=2�10−3 and �=5
�10−3 �the magnetic Prandtl number in this simulation was
PM =� /�=0.4�. In the ABC run, �=�=2�10−3 �PM =1�.
The mechanical Reynolds numbers reached by the two flows
are Re=675 for the Taylor-Green flow and Re=820 for the
ABC �28,29�.

As we stated in the Introduction, we are interested in
quantifying the rate of energy transfer from the different
scales of the velocity field to the different scales of the mag-
netic field. To rigorously define the velocity and magnetic
field at different scales we introduce the shell-filtered veloc-
ity and magnetic field components uK�x� and bK�x�, where
the subscript K indicates that the field has been filtered to
keep only the modes in the Fourier shell �K ,K+1� �hereafter
called shell K�. Clearly the sum of all K components gives
back the original field. We are interested therefore in the rate
that energy from the velocity or magnetic field at a given
shell Q is transferred into kinetic or magnetic energy at an-
other shell K. From the MHD equations, taking the dot prod-
uct of Eq. �2� with bK and integrating over space, we obtain
the evolution of the magnetic energy Eb�K�=�bK

2 /2dx3 in
shell K:

�tEb�K� = �
Q

�Tub�Q,K� + Tbb�Q,K�� − �Db�K� , �3�

where we have introduced the two transfer functions
Tub�Q ,K� and Tbb�Q ,K� as defined below. The transfer rate
of kinetic energy at shell Q into magnetic energy at shell K is
defined as

Tub�Q,K� =� bK�b · ��uQdx3, �4�

and the transfer rate of magnetic energy from shell Q into
shell K is defined as
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Tbb�Q,K� = −� bK�u · ��bQdx3. �5�

The transfer Tub�Q ,K� is due to the stretching of magnetic
field lines by the velocity field gradients and leads to energy
input in the magnetic field. This term is responsible for dy-
namo action—i.e., conversion of kinetic energy into mag-
netic energy. The function Tbb�Q ,K� is due to the advection
of magnetic field vector components by the velocity field,
and it does not amplify the total magnetic energy. Instead, it
is responsible for the redistribution of magnetic energy
among the different shells and it is related to the cascade of
magnetic energy from larger to smaller scales. Finally, we
introduced the dissipation rate Db�K� in shell K defined as

Db�K� = −� 	� � bK	2dx .

More detailed definitions of these transfer terms and their
general properties can be found in paper I.

We measured the transfer functions based on Eqs. �4� and
�5� using ten different outputs �corresponding to ten different
times� for each run during the kinematic regime. The trans-
fers were normalized using the total magnetic energy and
were then averaged. As the system was approaching satura-
tion and was deviating from the exponential growth, single-
time outputs were used and the transfer functions were nor-
malized using the total magnetic energy, but were not
averaged, since in this stage the normalized magnetic energy
spectrum is changing with time. From here on, we will use
the notations Tub�Q ,K� and Tbb�Q ,K� for the normalized
transfer functions Tub�Q ,K� /�K�Eb�K�� and Tbb�Q ,K� /
�K�Eb�K��, unless otherwise noted.

III. RESULTS

A. Kinematic regime

We begin by describing the general properties of the two
dynamos investigated in this work. Figure 1 shows the ki-
netic and magnetic energy spectra for a TG simulation in the
kinematic dynamo regime. In Fig. 2 we show the same spec-

tra for the ABC run. Note that the kinetic energy spectrum
peaks in both cases at kF�3, where a well-defined large-
scale flow is present. For larger wave numbers the spectrum
has a short inertial range, with Kolmogorov scaling. During
the kinematic regime, the magnetic energy spectrum peaks at
small scales �k�9 for TG and k�12 for ABC� and all the
modes grow exponentially with the same rate. As a result, all
the spectra �and transfer functions� preserve their depen-
dence with wave number �up to an amplitude normalization�
as time evolves.

To study the kinematic regime, the MHD simulations
were started with a random magnetic field with values of
magnetic energy as low as EM /EK=5�10−9 to ensure that
the Lorentz force was negligible at all wave numbers even
with the magnetic energy spectrum peaking at small scales.

We first start with some general properties of the two
transfer functions. Contour plots of the transfers Tub�Q ,K�
and Tbb�Q ,K� during the kinematic regime of the TG run are
shown in Fig. 3. The gray scale indicates magnitude of the
transfer, with “dark” being positive and “bright” negative.
The figure should be interpreted as follows: At a given point
�Q ,K� in Fig. 3�a�, where the transfer is positive �negative�,
energy is given �received� by the velocity field at the scale Q
to �from� the magnetic field at scale K. Similarly at a given
point �Q ,K� in Fig. 3�b�, where the transfer is positive �nega-
tive�, energy is given �received� by the magnetic field at the
scale Q to the magnetic field at scale K.

Note that Tbb is by definition antisymmetric along the di-
agonal K=Q and is mostly concentrated in the surroundings
of the diagonal. The Tub transfer is concentrated on a triangle
below the diagonal and is positive everywhere. The fact that
Tbb is concentrated along the diagonal implies, as we will
show later, locality of interactions, while the “triangular”
shape of Tub implies long-range interactions in Fourier space.

To draw conclusions from the functional form of the
transfers we need to examine their behavior for different
fixed values of K or Q. Figures 4 and 5 show the Tub�Q ,K�
function at constant values of Q for the TG and ABC simu-
lations, respectively. The transfer is always positive, imply-
ing that kinetic energy is transferred from all velocity wave

FIG. 1. Spectra of kinetic energy �thick solid line� and magnetic
energy �thin solid line� scaled up by a factor 106 for the Taylor-
Green runs during the kinematic dynamo regime. The dashed line
indicates the Kolmogorov slope as a reference. Note that during this
stage, all the magnetic modes grow with approximately the same
rate. FIG. 2. Spectra of kinetic energy �thick solid line� and magnetic

energy �thin solid line� scaled up by a factor 102 for the ABC runs.
The dashed line indicates the Kolmogorov slope as a reference.
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numbers Q to magnetic energy at different K shells. The
transfer is maximum for wave numbers close to Q and then
slowly decays. Note that in the ABC run the flow at Q=3
gives more energy than the turbulent fluctuations �Q
=5,10,20,30� when compared with the TG simulation. This
is related to the fact that in the ABC run the Q=3 shell
contains most of the kinetic helicity of the flow, an ingredient
known to be relevant for dynamo action �1,6�. We note here
that since the transfers are normalized by the total magnetic
energy and the two runs have different magnetic energy
spectra, a direct comparison of the values of the transfers
between the two runs cannot be made.

In Figs. 6 and 7 we show the same transfer function Tub
but now for constant values of K. The transfer is positive at
all scales, pointing to the fact that all velocity shells are
giving energy to the magnetic field �compare this result with
the turbulent steady state in paper I, where energy is being
transferred from the magnetic field to the velocity field at
small scales�. A peak at Q=3 can be identified at all wave
numbers K, indicating that the large-scale flow gives energy
nonlocally to all magnetic shells. For wave numbers Q�3
also a plateau can be identified, where Tub as a function of Q
is approximately constant. The plateau drops at K	Q. This
region of constant Tub corresponds to all kinetic energy shells
at 3�Q
K �the turbulent fluctuations� transferring the same
amount of energy to the magnetic field at shell K. In the ABC
simulations, the role played by the turbulent fluctuations is

again observed to be smaller than in the TG runs when com-
pared with the large-scale flow at Q�3.

The transfer of magnetic energy between different scales
is shown in Fig. 8. As previously mentioned, this transfer is
associated with the cascade of energy to smaller scales. Each
shell Q is giving energy to a slightly larger wave number K
�the positive peak of the curves� and receiving energy from a
slightly smaller wave number K� �the negative peak of the
curves�. There is an increase of the amplitude of the transfer
as the wave number Q is increased up until the peak of the
spectrum is reached and then it drops again. This transfer
function drops fast for wave numbers K and Q far apart and
therefore indicates a local transfer of energy.

We are ready now to answer some of the questions posed
in the Introduction. First we want to consider if it is the
large-scale flow that drives the dynamo or the turbulent fluc-
tuations. On average the contribution to the injection of mag-
netic energy from the large-scale flow is 16% for the TG
flow and 25% for the ABC flow. Note that this fraction is
much smaller than what is obtained in the saturated regime
�60% for TG and 75% for ABC in �25��. Furthermore, the
influence of the large-scale flow becomes smaller as we are
deeper in the inertial range. In Fig. 9 we show the ratio

RLS�K� = �
Q=2,3,4

Tub�Q,K�
�
Q

Tub�Q,K� ,

which expresses the fraction of energy a magnetic shell K
receives only from the the large-scale flow �the peak at Q

FIG. 4. Transfer function Tub�Q ,K� �from the kinetic energy at
Q to the magnetic energy at K� for fixed values of Q during the
kinematic regime of the TG run.

FIG. 5. Transfer function Tub�Q ,K� for fixed values of Q during
the kinematic regime of the ABC run.

FIG. 3. Transfer functions �a� Tub, and �b� Tbb �see Eqs. �4� and �5�� as a function of Q and K in the TG run during the kinematic regime.
Tub is positive for all values of Q and K shown. Each point �Q ,K� in panel �a� represents the rate of transfer of energy from velocity mode
Q to magnetic mode K. Each point �Q ,K� in panel �b� represents the rate of transfer of energy from magnetic mode Q to magnetic mode K.
The dashed line indicates the diagonal K=Q.
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=2,3 ,4 in Figs. 6 and 7� to the total energy received by the
same shell from the velocity field at all scales. For both flows
the energy input from large scales becomes smaller as the
wave number K is increased and the large-scale flow only
dominates the injection of magnetic energy over a small
range KF�K�KLS, with KLS�5. This indicates that for
large Reynolds numbers and in scales much smaller than the
forced scales the input of energy directly from the large-scale
flow is not as important.

Another question we posed in the Introduction is whether
the small-scale magnetic fluctuations are the result of a cas-
cade of energy from the large-scale magnetic field or from a
direct input of energy �amplification� from the velocity field.
To answer this question, in Fig. 9 we also plot the ratio

RC�K� = �
Q=0

K

Tbb�Q,K�
�
Q

Tub�Q,K� ,

which expresses the fraction of energy a magnetic shell K
receives from the cascade of energy from larger magnetic
scales to the total energy received in the same shell directly
from the velocity field. The cascading term appears to be
smaller up to a wave number KC�12 close to the peak of the
magnetic energy spectrum. For K�KC there is more energy
input from the cascade than the input from the velocity field.
Between these two processes, a range of wave numbers
KLS�K�KC exists where the amplification of the magnetic
field is purely dominated by injection from the turbulent ve-
locity scales. Note that the existence of these three different
regions in Fourier space and the values of the wave numbers

KLS and KC can be expected to depend on the values of the
Reynolds numbers.

We also investigate the growth rate of large-scale mag-
netic fields restricted to the shells K=1,2. In order to obtain
the highest possible Reynolds numbers in the simulations,
the scale separation between the forcing band and the large-
scale magnetic field was chosen to be small, and therefore an
investigation of the � dynamo effect is not possible in the
present study. Here we just limit ourselves to investigate
which scale of the velocity field is responsible for the input
of energy in the large scales K=1 and K=2 of the magnetic
field. In Fig. 10 we show the transfer of energy from the
velocity field to these large-scale modes. Although there is a
contribution from the turbulent fluctuations, the bulk of the
energy originates from the forced modes. A similar result
was obtained in Ref. �9�, in simulations with larger-scale
separation �kF�5� but lower Reynolds numbers.

Finally, in both simulations, all wave numbers are ob-
served to grow with the same growth rate during the kine-
matic regime. To investigate this we can write the energy

FIG. 6. Transfer function Tub�Q ,K� for fixed values of K during
the kinematic regime of the TG run.

FIG. 7. Transfer function Tub�Q ,K� for fixed values of K during
the kinematic regime of the ABC run.

FIG. 8. Transfer function Tbb�Q ,K� �from magnetic energy at
shell Q to magnetic energy at shell K� at fixed values of Q during
the kinematic regime of the TG and ABC runs.

FIG. 9. Ratio RLS of energy received by the magnetic field at
wave number K from the forced wave numbers against all wave
numbers and ratio RC of energy received by the magnetic field at
wave number K from the magnetic field at larger scales through a
cascade process against energy received from the velocity field. The
solid lines correspond to the TG run while the dashed lines corre-
spond to the ABC run, both in the kinematic regime.

SHELL-TO-SHELL ENERGY …. II …. PHYSICAL REVIEW E 72, 046302 �2005�

046302-5



budget using the induction equation �2� in Fourier space.
Taking the dot product with the magnetic field bK at shell K
and dividing by the magnetic energy Eb�K� in that shell, we
finally obtain

1

Eb�K�
�

�t
Eb�K� =

1

Eb�K��Q �Tub�Q,K� + Tbb�Q,K�� − �K2,

�6�

where the simplification D�K��K2Eb�K� was used. The left-
hand side of Eq. �6� gives the growth rate �. The first two
terms on the right-hand side are the energy received by the
magnetic field at shell K from the velocity field and from the
magnetic field at all scales. The last term is the Ohmic dis-
sipation. In Figs. 11 and 12 we show each term of this budget
as a function of the wave number K for the TG and ABC
runs. The difference between the solid line and the dotted
line is the growth rate. In spite of the fluctuations, the growth
rate seems to be constant in a wide range of wave numbers.
This is more clearly observed in the ABC run because of the
larger growth rate in this simulation. The constant growth

rate over all scales therefore is the result of a balance be-
tween the energy received by the magnetic field at each shell
K locally �from the direct cascade�, nonlocally �from the
stretching of field lines�, and of the Ohmic dissipation. Note
that when integrated over all Q, the direct cascade Tbb�Q ,K�
gives a negative contribution �up to k�20 in the TG run and
larger wave numbers for the ABC case�, indicating that each
magnetic shell K gives locally more energy to smaller scales
than what it receives from the larger scales. This is compen-
sated by the energy injected by the velocity field through the
transfer Tub.

B. Saturation of the dynamo

In this section we discuss the evolution of the transfer
function for the TG run as the dynamo approaches the non-
linear saturation. The ABC run shows similar features except
for a slow growth of the magnetic field at K=1, which finally
dominates the magnetic energy. The transfer of magnetic en-
ergy at the large scales in this case has been studied in �9�.
For details of the transfer in the final state reached by the two
simulations, we refer the reader to paper I.

Figure 13 shows the Tub transfer at K=20 as a function of

FIG. 10. Energy received by the magnetic field at scales larger
than the forcing band �K=1 and 2� from the velocity field at wave
numbers Q.

FIG. 11. Terms determining the growth rate of magnetic energy
�see Eq. �6�� as a function of wave number K for the TG run during
the kinematic regime. The dashed line is the energy received by the
magnetic field from the velocity field, and the dash-dotted line is the
cascade of magnetic energy. The solid line is the total energy re-
ceived by the magnetic field, while the dotted line is the Ohmic
dissipation. The difference between the last two curves gives the
growth rate.

FIG. 12. The budget of magnetic energy giving rise to the
growth rate for the ABC run during the kinematic regime. Labels
are as in Fig. 11.

FIG. 13. Transfer function from the kinetic energy at Q to the
magnetic energy at K=20 for three different times as the magnetic
field approaches saturation in the TG run.

MININNI, ALEXAKIS, AND POUQUET PHYSICAL REVIEW E 72, 046302 �2005�

046302-6



time as the nonlinear saturation takes place. Each transfer has
been normalized by the total magnetic energy at that time.
The transfer at t=13.5 corresponds to the kinematic regime.
At t=73.5, the small-scale magnetic field saturates and stops
growing �see �28��. The velocity field turbulent fluctuations
are partially quenched, and the kinetic energy at small scales
is reduced. This suppression of turbulence by the magnetic
field has been previously observed �9,28�, and as a result the
transfer of energy to the magnetic field at wave number K
from the velocity field between 3�Q
K is also strongly
reduced. However, the large-scale velocity field at Q=3
keeps transferring energy to the magnetic field. In this stage,
the large-scale magnetic field keeps growing until the large
scales are dominated by magnetic energy and suppress even
more the turbulent fluctuations. At t=178.5, the system has
finally reached the steady state. The magnetic field at each
shell K is sustained by both the large-scale flow and the
turbulent fluctuations, but now the amplitude at all scales has
been reduced due to the Lorentz force. Note also that the
transfer at scales Q	K is now negative, pointing to the fact
that the magnetic energy is feeding the velocity field at small
scales.

In Fig. 14, we show the transfer Tub�Q ,K� for a fixed
velocity wave number Q=16 for the same times as in Fig.
13. Again, the transfers have been normalized by the total
magnetic energy at each time. In the kinematic regime, the
velocity field at Q=16 gives energy �positive transfer� to the
magnetic field at all scales. When the small-scale magnetic
field saturates �t=73.5� the velocity field at Q=16 gives en-
ergy only to magnetic shells with K�Q and modes with K
�Q receive almost no energy. This regime corresponds to
the case where the magnetic field at small scales has satu-
rated and its energy is sustained by the dynamo without fur-
ther amplification. The large-scale field keeps growing,
mostly fed by the large-scale flow at Q=3 as previously
discussed. Finally, in the saturated regime �t=178.5� the
magnetic field at Q=16 receives energy from all kinetic
shells Q with K�Q, while it gives energy �negative transfer�
to all kinetic shells with K�Q.

Finally, in Fig. 15 we show the transfer of magnetic to
magnetic energy Tbb as a function of time. The local transfer
between magnetic shells is not changing as much as Tub as

the dynamo saturates, except for a change in the amplitude.
The amplitude is decreasing as saturation is approached, an
effect that appears first in the small scales. We note that the
role of the local direct cascade Tbb becomes more dominant
when compared with the Tbb term as saturation is approached
�25�.

IV. DISCUSSION

In this work, the transfer of energy from the different
scales of the velocity field to the different scales of the mag-
netic field has been studied. We now give a brief summary of
our most important results and discuss the implications for
dynamo theory.

It has been shown that the magnetic field grows as the
result of a complex interaction between large and small
scales. Both large and small scales of the flow give a contri-
bution to the dynamo. The amplification of the large-scale
magnetic field during the kinematic regime is due to the
large-scale flow �large-scale dynamo�. At smaller scales,
most of the injection of energy from the velocity field during
the kinematic regime is due to the turbulent fluctuations of
the velocity field �small scale dynamo�. A competing mecha-
nism for the amplification of the magnetic field at the small
scales is the cascade of magnetic field energy from the large
scales to the small scales that is also transferring energy to
the small scales. The rate that energy is transfered to the
small scales through the cascading process is smaller than
the rate that the velocity field is injecting energy at the small
scales for a finite range of wave numbers. For sufficiently
small scales �close to the scale at which the peak of the
magnetic energy spectrum is reached�, the cascading term
becomes larger than the small-scale dynamo term.

The results in this paper and the formalism used help us
understand and classify the dynamo processes involved in
the amplification of the magnetic field. In this formalism, we
were able to measure and compare each component in the
dynamo process that is involved in the amplification of the
magnetic field in both small and large scales. Therefore, we
can distinguish between different dynamos based on whether
the cascading terms dominate over the injection terms in the

FIG. 14. Transfer function from the kinetic energy at Q=16 to
the magnetic energy at K for three different times as the magnetic
field approaches saturation in the TG run.

FIG. 15. Transfer of magnetic energy at shell Q to shell K �for
K=10 and K=20� for three different times as the magnetic field
approaches saturation in the TG run.
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small scales and on whether the turbulent fluctuations are
more dominant for the generation of the magnetic field when
compared with the input from the large scale flow. Of course,
this is not the only possible distinction that can be made
between dynamos; however, it is an important step towards
classifying dynamos in the presence of both a large-scale
flow and turbulent fluctuations.

Finally we would like to note that the investigation of the
growth of a large-scale magnetic field with enough scale
separation between the forced scale and the domain size is
required to study processes such as the dynamo � effect and

the inverse cascade of magnetic helicity. A similar analysis
will be performed in this context in future works.
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